Stable X Chromosome Reactivation in Female Human Induced Pluripotent Stem Cells
نویسندگان
چکیده
In placental mammals, balanced expression of X-linked genes is accomplished by X chromosome inactivation (XCI) in female cells. In humans, random XCI is initiated early during embryonic development. To investigate whether reprogramming of female human fibroblasts into induced pluripotent stem cells (iPSCs) leads to reactivation of the inactive X chromosome (Xi), we have generated iPSC lines from fibroblasts heterozygous for large X-chromosomal deletions. These fibroblasts show completely skewed XCI of the mutated X chromosome, enabling monitoring of X chromosome reactivation (XCR) and XCI using allele-specific single-cell expression analysis. This approach revealed that XCR is robust under standard culture conditions, but does not prevent reinitiation of XCI, resulting in a mixed population of cells with either two active X chromosomes (Xas) or one Xa and one Xi. This mixed population of XaXa and XaXi cells is stabilized in naive human stem cell medium, allowing expansion of clones with two Xas.
منابع مشابه
X Chromosome of Female Cells Shows Dynamic Changes in Status during Human Somatic Cell Reprogramming
Induced pluripotent stem cells (iPSCs) acquire embryonic stem cell (ESC)-like epigenetic states, including the X chromosome. Previous studies reported that human iPSCs retain the inactive X chromosome of parental cells, or acquire two active X chromosomes through reprogramming. Most studies investigated the X chromosome states in established human iPSC clones after completion of reprogramming. ...
متن کاملLive imaging of X chromosome reactivation dynamics in early mouse development can discriminate naïve from primed pluripotent stem cells.
Pluripotent stem cells can be classified into two distinct states, naïve and primed, which show different degrees of potency. One difficulty in stem cell research is the inability to distinguish these states in live cells. Studies on female mice have shown that reactivation of inactive X chromosomes occurs in the naïve state, while one of the X chromosomes is inactivated in the primed state. Th...
متن کاملReactivation of the inactive X chromosome and post-transcriptional reprogramming of Xist in iPSCs.
Direct reprogramming of somatic cells to pluripotent stem cells entails the obliteration of somatic cell memory and the reestablishment of epigenetic events. Induced pluripotent stem cells (iPSCs) have been created by reprogramming somatic cells through the transduction of reprogramming factors. During cell reprogramming, female somatic cells must overcome at least one more barrier than male so...
متن کاملTranscriptional regulation in pluripotent stem cells by methyl CpG-binding protein 2 (MeCP2).
Rett syndrome (RTT) is one of the most prevalent female mental disorders. De novo mutations in methyl CpG-binding protein 2 (MeCP2) are a major cause of RTT. MeCP2 regulates gene expression as a transcription regulator as well as through long-range chromatin interaction. Because MeCP2 is present on the X chromosome, RTT is manifested in an X-linked dominant manner. Investigation using murine Me...
متن کاملLate Replication of the Inactive X Chromosome Is Independent of the Compactness of Chromosome Territory in Human Pluripotent Stem Cells
Dosage compensation of the X chromosomes in mammals is performed via the formation of facultative heterochromatin on extra X chromosomes in female somatic cells. Facultative heterochromatin of the inactivated X (Xi), as well as constitutive heterochromatin, replicates late during the S-phase. It is generally accepted that Xi is always more compact in the interphase nucleus. The dense chromosoma...
متن کامل